top down
Our Feeds
Rolles Nixon Palilingan

SEPUTAR AKTIVITAS PRAKTIKUM LAPANGAN

Seputar Aktivitas Praktikum Lapangan

Berikut ini adalah foto-foto untuk perangkat aktivitas praktikum lapangan. Dengan alat yang sederhana tetapi dapat mengungkap begitu banyak konsep-konsep fisika.

Gambar 1.
Alat untuk Mengukur Suhu Tanah pada Kedalaman z = 0 cm

Gambar 2.
Disai Ergonomis Perangkat Pengukuran Kelembaban Lingkungan dengan Psikrometer Sederhana

Gambar 3.
Disai Ergonomis Perangkat Pengukuran Suhu Lapisan Udara Dekat Permukaan dengan Termometer Sederhana

Gambar 4.
Sandaran Penyanggah Ergonomis untuk Kebutuhan Pencatatan Data Pengamatan. Tinggi Bersifat adjustable untuk Menyesuaiakan dengan Antropometri Mahasiswa.

Gambar 5.
Perangkat Praktikum Lapangan, Siap untuk Dipasang di Arena Praktikum. Praktikum Dapat Dilakukan di Mana Saja Tergantung Kebutuhan. Contoh Dapat Dilakukan di Pinggir Pantai, di Daerah Dataran Tinggi, Dataran Rendah, di Bawah Tegakan Hutan, dan di Atas Permukaan Rumput

Gambaar 6.
Pengukuran Suhu Lapisan Tanah.

Gambar 7.
Inovasi Pengukuran Kelembaban Ergonomis di atas Permukaan dengan Psikrometer yang Dibuat dari Termometer Sederhana.

Berikut ini adalah foto-foto untuk perangkat praktikum lapangan dan alat-alat sederhana yang ergonomis untuk pengukuran variabel-variabel fisis di lapangan.

Berikut ini adalah foto-foto sekelumit aktivitas praktikum lapangan di daerah panas dengan menggunakan perangkat dan peralatan praktikum ergonomis.


Berikut ini adalah foto-foto sekelumit aktivitas praktikum lapangan di daerah dingin dengan menggunakan perangkat dan peralatan praktikum ergonomis.


Rolles Nixon Palilingan

Understanding of Biophysics

Understanding Biophysics

In Anonymous (2007) suggested that biophysics is the study of biological phenomena using the methods and concepts of physics, whereas in Anon (2005) suggested that biophysics is the interdisciplinary study of the phenomenon and biological problems using the principles of and techniques of physics. Biophysics relies on techniques derived from physics, but focused on biological problems.

Referring to the definitions that have been raised about the biophysics, so in the context of a worker who does outdoor activities, it can be seen as a biophysical study of biological phenomena on a worker who interacts with the local physical environment while doing work activities by using the principles, concepts, and methods of physics. In this case, Campbell (1977) called the study of physics in this context as the biophysical environment. According to Campbell (1977) developments in the field of environmental biophysics primarily focused on two areas namely:
  1. Use of mathematical models to quantify the rate of heat and mass transfer, and
  2. Use the continuity equation which has led to the analysis of energy balance.
Therefore, it can be argued that in the environmental biohysics learnt about how is the application of physics concepts on the interaction between living organisms with their physical environment, so in this context to learnt about the application of physics concepts on the interaction between workers and their physical environment when doing outdoor activities.
In a working system (Corlett and Clark, 1995), significant interaction not only between human and physical environment but also with tools and equipment used when working.The third form of interaction is illustrated in the figure below.
Take for example a student performs a field activity. Microclimate that consists of solar radiation, air temperature, air humidity, and wind speed which is the element of physical environment, become very important as an influential factor. In addition, tools and equipment in use is also decisive. The most important equipment is usually suit, and other equipment such as protective clothing (PPD) as hats, umbrellas, jackets / coats, and included here is a shoe. The equipment used will be adjusted to the goal of activity. For the field practicum activities the used equipment is equipment associated with the unit of practicum activity planned.
Phisical process about the influence microclimate, tools, and instruments used against the body of worker is biophysical processes.
Biophysical concept that is important in the biophysical process in this context are the law of conservation of energy. According to Campbell (1977) concept of conservation of energy, which is also commonly written in the form of continuity equation, the advanced application of environmental biophysics at last leads to the analysis of energy balance.

Energy balance analysis can be done by using a system approach. By looking at human body as a system, Havenith (1999, 2002), Blazejczyk (2000), Brake and Bates (2002) and Epstein and Moran (2006) describes the heat balance equation for the human body as the following equation,
Heat stored = heat produced – heat lost = (metabolic rate – external work) – (conduction + radiation + convection + evaporation + respiration)
The factors that state lose body heat, as has been stated in the above equation for the path of conduction, convection, and radiation, followed the general equation of transfer or heat transfer (Havenith, 2004; Campbell, 1977; Monteith and Unsworth, 1990) in which it’s general form of equation can be written as,
heat lost = (gradient x surface area)/risistance
From this equation it can be stated that for each path; conduction, convection and radiation, the amount of heat transferred depends on the driving force, the temperature gradient and vapor pressure, body surface area involved and the resistance in which the heat flow, which can be clothing insulation.

According to Havenith (1999, 2001, 2002, and 2004) the processes of heat loss and heat production are directed to the energy balance to maintain the normal body temperature of about 37 0C. This value is achieved by balancing the amount of heat produced in the body with the amount of heat lost. The following image shows the schematic representation of the path forms of energy that occurs when workers doing outdoor activities such as field practicum.

Heat production is determined by metabolic activity. At the break, the heat produced by the body for basic functions such as respiration and body's heart function by providing the body cells of oxygen and food (Nutrients) is required in carrying out the basic functions. At the time of performing the work activity, the needs of the active muscles against oxygen and food increases, and as a result of metabolic activity also increased. When the active muscle cells burn food for mechanical activity, part of the energy released to the outside of the body as external work, but most are released into the muscle as heat. When the heat is not released the temperature of the body will increase up to a lethal level.

Furthermore Havenith (1999, 2002) suggests, for the heat lost from the body, there are a few paths. The path with a small role is conduction. Conduction only becomes an important factor for people working in the water, or people who work for handling cold products or working in the supine position where the bodies come into contact with heat transfer medium. More important path for heat loss are convection, when the cooler air flows along the surface of the skin. Therefore, heat is transferred from the skin into the surrounding air. The heat will also be transferred in the form of electromagnetic radiation, or the so-called long-wave radiation. When there is a difference between body surface temperature and surface temperature of the object or objects around him there will be a transfer of heat by radiation..

Finally, the body also has other paths to release heat to the outside of the body, the heat is lost through evaporation. Because the body's ability to sweat, water vapor that appears on the surface of the skin through the pores of the skin can evaporate, by which the amount of heat released to the outside of the body.

In addition to the heat loss from the path of convective and evaporative from the skin, a type of heat loss occurs from the lungs through respiration because the air is out of the lungs usually colder and drier than on the surface of the lungs. Through the process of respiration the body losses heat that can reach 10% of the total heat produced by the body.

For your body stable, heat lost must be balanced with the heat produced. Otherwise, the heat content of the body will change, which causes the body temperature rises or falls. So if the heat production through he metabolic rate is higher than the sum of all heat lost, the stored heat will be marked positive (surplus), which means that the heat content of the body increases and body temperature will rise. If the stored heat is marked negative (deficit), heat loss is greater than the heat produced. The body becomes cold, and body temperature will fall.

REFERENCES
  1. Anonim, 2005. Biophysics. Microsoft® Encarta® 2006 [DVD]. Redmond, WA: Microsoft Corporation.
  2. Anonim. 2007. Description of Biophysics. Springer. European Biophysics Journal, [cited 2007 Feb 5]. Available at: URL: http://www.springer.com/
  3. Blazejczyk, K. 2000. Assessment of Recreational Potential of Bioclimatic Based on The Human Heat Balance. Institute of Geography and Spatial Organization. Warsaw, Poland.
  4. Brake, R and Bates, G. 2002. A Valid Methods for Comparing Rational and Empirical Heat Stress Indices. School of Public Health, Curtin University, Perth, Australia. Ann.Occup.Hyg. 46(2):165-174, [cited 2007 Mar.5]. Available from: URL: http://annhyg.oxfordjournals.org/.
  5. Campbell, G. S. 1977. An Introduction to Environmental Biophysics. New York: Springers-Verlag.
  6. Corlett, E. N. and Clark, T. S. 1995. The Ergonomics of Workspaces and Machines. A Design Manual. Taylor & Francis, 2nd erds. USA.
  7. Epstein, Y and Moran, D. S. 2006. Thermal Comfort and the Heat Stress Indices. Industrial Health: 44, 388–398.
  8. Havenith, G. 2004. Clothing Heat Exchange Models for Research and Application. Environmental Ergonomics Research Group, dept.Human Sciences, Loughborough, UK. p.66-73., [cited 2007 Apr 19]. Available from: URL: http://magpie.lboro.ac.uk/.
  9. Havenith, G. 2002. The Interaction of Clothing and Thermoregulation. Human Thermal Environments Laboratory. Department of Human Sciences. Loughborough Univ., UK, [cited 2007 Apr 15]. Available from: URL: http://www.lboro.ac.uk/.
  10. Havenith, G. 2001. Individualized Model of Human Thermoregulation for the Simulation of heat stress response. Human Thermal Environment Laboratory, Loughborough University. J Appl. Physiol., 90:1943-1954, [cited 2007 Mar 5]. Available from: URL: http://jap.physiology.org/.
  11. Havenith, G. 1999. Heat Balance when Wearing Protective Clothing. Human Thermal Environment Laboratory, Loughborough University. Ann.Occup.Hyg, 43(5):289-296, [cited 2007 Mar 5]. Available from: URL: http://annhuy.oxfordjournals.org/.
  12. Monteith, J. L. and Unsworth, H. M. 1990. Principles of Environmental Physics. 2nd ed. London: Edward Arnold.
Rolles Nixon Palilingan

APCHI & Ergofuture 2010

APCHI & Ergofuture 2010
Joint International Conference of APCHI (Asia Pacific Computer Human Interaction) 2010 and Ergofuture 2010
Bali, 3 – 5 August, 2010

secretariat e-mail : ergofuture2010@yahoo.co.id
Call for Proposals and Participation
Background
Based on long experiences working in Human Computer Interaction (HCI), Ergonomics (Erg), Occupational Safety and Health (OSH), it seems that we are practically still running at the same place up to now. Injury and accident in fact is still happening, even also in a workplace fully equipped with up to date regulation and acts as well as safety measures likes personal protective devices. Priority must be given to tackle and manage unsafe behavior and developing safety behavior with its positive thinking and act. Mind set changes become an important issue to be successful. And a total approach must be done to solve the complex problem completely.

Goals
  1. To provide guidance and direction for young ergonomists
  2. To show the unfit, improper, inappropriate research and application of ergonomics and OSH
  3. To convince that a total and a more strategic approach must be done in conducting research and application with aim to have
    maximal benefit.
Scientific Program
  1. Pre Conference (Symposium, Workshops and Tutorials)
  2. Keynote Addresses
  3. Free communication (parallel session): Human Computer Interaction, Cultural, Hospital, Aging, Small scale industries, Industrial sports, Disable, Children, Women ergonomics, Cognitive, Product Design, Displays and Warnings, Mining, MSDs, ODAM, Office, Communities, Transport, Tourism, Agriculture, Architecture, School, Home, Industrial, 24 hours society, etc
  4. Student papers for undergraduate
  5. Accompany program
  6. Additional tour (under request and number of participants)
VenuesThe conference will be held at Sanur Paradise Plaza Hotel & Suites, a four star hotel located at Sanur beach Denpasar Bali, about 20 minutes from International Airport Ngurah Rai.

Organizing Committee
Bali Ergonomics Study Group, APCHI, Indonesian Ergonomics Society (IES) Bali Chapter, Postgraduate Program on Ergonomic Udayana University, IES, Dept. of Physiology Udayana University, and Bali Human Ecology Study Group.

Important Deadlines
  1. 28 February 2010: Proposal submissionAbstract of max 500 words, one paragraph and one page including Author/s, affiliations, address (e-mail), content and keywords.
  2. 31 May 2010: Full paper submission
    Full paper of accepted abstract must be written according to the paper template and the length between 4 -5 pages.
Schedules
Registration fee




Rolles Nixon Palilingan

KARYA ILMIAH YANG TERKAIT

Karya Ilmiah Dalam Bentuk Buku:
  1. Palilingan, R. N. 1995. Termodinamika Udara. Tondano: Jurusan Pendidikan Fisika, FPMIPA IKIP Manado.
  2. Palilingan, R. N. 1996. Aplikasi Analisis Fourier. Tondano: Jurusan Pendidikan Fisika, .FPMIPA IKIP Manado..
  3. Palilingan, R. N. 1997. Aplikasi Analisis Dimensional. Tondano: Jurusan Pendidikan Fisika, FPMIPA IKIP Manado.
  4. Palilingan, R. N., Marianus, Tengko, S. N., dan Pungus, M. M. 2003. Panduan Praktikum Fisika Lingkungan. Tondano: Jurusan Fisika FMIPA UNIMA.
  5. Palilingan, R. N. 2003. Fisika Lingkungan. Cetakan I. Manado: Media Pustaka.
  6. Palilingan, R. N. 2009. Model Aktivitas Praktikum Lapangan Berbasis Ergonomi. Cetakan I. Tondano: Kelompok Konsentrasi Fisika Lingkungan.
  7. Palilingan, R. N. 2009. Ringkasan Disertasi: Model Aktivitas Praktikum Lapangan Berbasis Ergonomi (APeLErg) Memperbaiki Respon Fisiologis Tubuh, Menurunkan Kelelahan, dan Meningkatkan Kinerja Dibandingkan dengan Model Lama (APeL) pada Mahasiswa FMIPA UNIMA. Cetakan I. Tondano: Kelompok Konsentrasi Fisika Lingkungan.
  8. Palilingan, R. N. 2010. Pengantar Biofisika Lingkungan. Cetakan I. .Tondano: Kelompok Konsentrasi Fisika Lingkungan.
  9. Palilingan, R. N., Tengko, S. N., Pungus, M. M., Marianus, Rasem. 2010. Praktikum Fisika Lingkungan. Terkait dengan Iklim Mikro dan Udara Bagian Atas. Cetakan I. Tondano: Kelompok Konsentrasi Fisika Lingkungan.
Karya Ilmiah Makalah
  1. Palilingan, R. N. 2006. The Use of Eight Aspects of ergonomics as a Holistic tool to Evaluate Performance of an Enterprise Properly. Poster Presentation on Ergo Future 2006, International symposium on Past, Present, and Future Ergonomics Occupational Safety and Health. Department of Physiology, Udayana University–School of Medicine. Denpasar, Bali Indonesia, 2006 August 28-30.
  2. Palilingan, R. N dan Pungus, M, M. 2007. Prospek Penerapan Pendekatan Ergonomi Total pada Akivitas Praktikum Lapangan Berdasarkan Evaluasi terhadap Respons Fisiologis Tubuh dan Tingkat Kelelahan Mahasiswa. Proceeding Seminar Nasional Ergonomi 2007. Bandung: 26-28 Juli 2007.
  3. Pungus, M. M dan Palilingan, R. N. 2007. Evaluasi Beban Kerja dan Strain Fisiologis pada Aktivitas Praktikum Lapangan Mahasiswa FMIPA UNIMA. Proceeding Seminar Nasional Ergonomi 2007. Bandung: 26-28 Juli 2007.
  4. Purnomo, H. Dewantara, M. Y. dan Palilingan, R. N. 2006. Penilaian Performansi Operator Komputer. Proceeding Seminar Nasional Ergonomi dan K3, ITS Surabaya, Juli.
  5. Aspek Biofisika Aktivitas Praktikum Lapangan.
  6. Palilingan, R. N. 2009. Model Activity Of Ergonomics-Based Field Work (Apelerg), Compared With The Conventional Model (Apel), Improves Physiological Responses, Decreases Fatigue, And Increases Performance Of The Students Of FMIPA UNIMA. Presented on The 17th Congress of the International Ergonomics Association. August 9 - 14, 2009 Beijing, China.
Rolles Nixon Palilingan

Environmental Biophysics

Environmental biophysics is of course very complex. However, from its complexity one part that is interesting and important is biophysics in macroscopic scale, especially biophysics of working. In this context, the important physical concept is the application of the law of conservation of energy when a person is interacted with physical environment and instruments or equipments utilized in a working system.
Biophysics of Working

The biophysics of working is about important physical concepts when a person performs an activity in a working system. A working system consists of three principal components: worker, physical environment, and instruments or equipments utilized in working, and organization. In performing an activity, the body of worker will interact with physical environment and instrument or equipments utilized in working. In the interaction, the important physical concept is about energy. For example, when a person performs an outdoor activity, he or she will be exposed to direct sunlight, air temperature, air humidity and wind speed. Because of the performed activity, the metabolism of body cells will increase. Consequently, the body temperature will also increase. Physiologically, a thermoregulatory mechanism governed by the center of nervous system will work to maintain the body temperature to a value of set point, 37 degree of Celsius. If the temperature average of body is 37-Celsius degree, the body is in thermal equilibrium. It means that the heat produced by body cells is balanced with heat released out of body. A Problem occurred when the temperature average of body is smaller or larger than the value of set point. If the temperature average of body is larger than the value of set point, it means that in the body occurs the heat surplus. On the contrary, when the temperature average of body is smaller than the value of set point, it means that in the body occurs the deficit of heat.
No matter what the working activity performed, it is better to be done efforts so that the temperature average of the body is around the value of set point (37-Celsius degree). In order to achieve thermal equilibrium, we need ergonomic knowledge. For useful information, visits
this scribd and the website of Rolles Nixon Palilingan.
Rolles Nixon Palilingan

Pengertian Biofisika


Pengertian BiofisikaDi dalam Anonim (2007) dikemukakan bahwa biofisika adalah studi tentang fenomena biologis dengan menggunakan metode-metode dan konsep-konsep fisika, sedangkan di dalam Anonim (2005) dikemukakan bahwa biofisika adalah studi interdisipliner tentang fenomena dan problem-problem biologis dengan menggunakan prinsip-prinsip dan teknik-teknik fisika. Biofisika bergantung pada teknik-teknik yang berasal dari ilmu fisika tetapi difokuskan pada problem-problem biologis.
Mengacu pada definisi yang telah dikemukakan mengenai biofisika, maka dalam konteks seorang pekerja yang melakukan aktivitas di alam terbuka, maka biofisika dapat dipandang sebagai studi tentang fenomena biologis pada seorang pekerja yang berinteraksi dengan lingkungan fisik setempat ketika sedang melakukan aktivitas kerja dengan menggunakan prinsip, konsep, dan metode fisika. Dalam hal ini Campbell (1977) menyebut kajian fisika dalam konteks ini sebagai biofisika lingkungan. Menurut Campbell (1977) perkembangan dalam bidang biofisika lingkungan terutama terfokus pada dua bidang yaitu:
Penggunaan model-model matematis untuk mengkuantifikasi laju transfer panas dan massa, dan
Pengunaan persamaan kontinuitas yang telah mengantar pada analisis neraca energi.
Oleh karena itu dapat dikemukakan bahwa dalam biofisika lingkungan dipelajari mengenai bagaimana penerapan konsep-konsep fisika pada interaksi antara mahluk hidup dengan lingkungan fisiknya, sehingga dalam konteks ini dipelajari mengenai aplikasi konsep-konsep fisika pada interaksi antara pekerja dan lingkungan fisiknya ketika melakukan aktivitas di alam terbuka.
Dalam suatu sistem kerja (Corlett and Clark, 1995), interaksi yang penting bukan hanya antara manusia dengan lingkungan fisiknya akan tetapi juga dengan peralatan dan perlengkapan yang digunakan pada waktu bekerja. Ketiga bentuk interaksi ini dilukiskan pada gambar berikut ini.

Ambila sebagai contoh seorang mahasiswa yang melakukan aktivitas praktikum lapangan. Iklim mikro yang terdiri dari: radiasi matahari, suhu udara, kelembaban udara, dan kecepatan angin yang merupakan unsur lingkungan fisik, menjadi sangat penting sebagai
faktor yang berpengaruh. Selain itu perlengkapan dan peralatan yang di gunakan juga menentukan. Perlengkapan yang paling penting biasanya adalah setelan pakaian, dan perlengkapan lainnya seperti pakaian pel
indung diri (PPD) seperti topi, payung, jas/mantel, dan termasuk di sini adalah sepatu. Peralatan yang digunakan akan disesuaikan dengan tujan dalam melakukan aktivitas. Untuk aktivitas praktikum lapangan peralatan yang digunakan adalah peralatan-peralatan yang berhubungan dengan aktivitas unit-unit praktikum yang direncanakan.
Proses secara fisik berlangsungnya dan terjadinya pengaruh iklim mikro, perlengkapan dan peralatan yang digunakan terhadap tubuh si pelaku aktivitas merupakan proses biofisika.

Konsep biofisika yang penting dalam terjadinya proses biofisika dalam konteks ini adalah hukum kekekalan energi. Menurut Campbell (1977) konsep kekekalan energi ini, yang juga biasa ditulis dalam bentuk persamaan kontinuitas, dalam aplikasi lanjut biofisika lingkungan akhirnya bermuara pada analisis neraca energi.
Analisis Neraca energi dapat dilakukan dengan menggunakan pendakatan sistem. Dengan memandang tubuh manusia sebagai suatu sistem, Havenith (1999, 2002), Blazejczyk (2000), Brake dan bates (2002) dan Epstein and Moran (2006) menuliskan persamaan neraca panas untuk tubuh manusia sebagaimana pada persamaan berikut,

Panas yang Tersimpan = Panas yang Diproduksi – Panas yang Hilang = (laju Metabolik – Usaha Eksternal) – (Konduksi + Radiasi + Konveksi + Evaporasi + Respirasi)

Faktor-faktor yang menyatakan kehilangan panas tubuh sebagaimana yang telah dinyatakan pada persamaan di atas untuk jalur konduksi, konveksi, dan radiasi, mengikuti persamaan umum transfer atau perpindahan panas (Havenith, 2004; Campbell, 1977; Monteith and Unsworth, 1990) yang bentuk umumnya dapat ditulis seperti persamaan,

Panas yang Hilang = (Gradien x Luas Permukaan)/Tahanan

Dari persamaan ini dapat dikemukakan bahwa untuk tiap jalur; konduksi, konveksi dan radiasi, jumlah panas yang ditransfer bergantung pada daya penggerak (driving force), yaitu gradien suhu dan tekanan uap, luas permukaan tubuh yang terlibat dan tahanan dimana panas mengalir, yaitu dapat berupa insulasi pakaian.
Menurut Havenith (1999, 2001, 2002, dan 2004) proses pelepasan panas dan proses produksi panas dalam neraca energi terarah kepada mempertahankan suhu tubuh normal sekitar 37 0C. Nilai ini dicapai dengan menyeimbangkan jumlah panas yang dihasilkan dalam tubuh dengan jumlah panas yang hilang. Gambar berikut menunjukkan representasi skematik jalur bentuk-bentuk energi yang terjadi ketika pekerja melakukan ak
tivitas di alam terbuka seperti praktikum lapangan.
Produksi panas ditentukan oleh aktivitas metabolik. Pada saat sedang istirahat, panas dihasilkan oleh tubuh untuk fungsi-fungsi dasar tubuh seperti respirasi dan fungsi jantung dengan memberikan pada sel-sel tubuh oksigen dan makanan (nutrients) yang dibutuhkan dalam menjalankan fungsi-fungsi dasar tersebut. Pada saat melakukan aktivitas pekerjaan, kebutuhan otot-otot aktif terhadap oksigen dan makanan meningkat, dan sebagai akibatnya aktivitas metabolik juga meningkat. Ketika sel-sel otot aktif membakar makanan untuk aktivitas mekanis, sebagian energi dibebaskan ke luar tubuh sebagai kerja eksternal, tetapi sebagian besar dilepaskan ke dalam otot sebagai panas. Bila panas tidak dilepaskan panas tersebut akan memanaskan tubuh sampai level yang mematikan.
Lebih jauh Havenith (1999, 2002) mengemukakan, untuk panas yang hilang dari tubuh, terdapat beberapa jalur. Jalur yang berperan sedikit adalah konduksi. Konduksi hanya menjadi faktor penting untuk orang yang bekerja di dalam air, atau orang yang bekerja untuk penanganan produk-produk dingin atau bekerja dalam posisi terlentang dimana tubuh bersentuan dengan medium transfer panas. Jalur yang lebih penting untuk pelepasan panas adalah konveksi, ketika udara yang lebih dingin mengalir sepanjang permukaan kulit. Oleh karena itu panas akan ditransfer dari kulit ke udara di sekitarnya. Panas juga akan ditransfer dalam bentuk radiasi elektromagnetik atau yang juga disebut radiasi gelombang panjang. Ketika ada perbedaan antara suhu permukaan tubuh dan suhu permukaan objek atau benda-benda yang ada di sekitarnya maka akan terjadi transfer panas melalui radiasi.
Akhirnya, tubuh juga memiliki jalur lain untuk pelepasan panas ke luar tubuh, yaitu panas yang hilang melalui evaporasi. Karena kemampuan tubuh untuk berkeringat, uap air yang muncul di permukaan kulit melalui pori-pori kulit dapat berevaporasi, dengan mana sejumlah panas dilepaskan ke luar dari tubuh.
Selain kehilangan panas konvektif dan evaporatif dari kulit, tipe kehilangan panas tersebut terjadi dari paru-paru melalui respirasi. Karena udara yang keluar dari paru-paru biasanya lebih dingin dan lebih kering dari pada permukaan dalam paru-paru. Melalui proses respirasi tubuh kehilangan sejumlah panas yang dapat mencapai 10% dari total panas yang diproduksi tubuh.
Agar tubuh stabil, panas yang hilang harus seimbang dengan panas yang diproduksi. Jika tidak demikian, kandungan panas tubuh akan berubah, yang menyebabkan suhu tubuh naik atau turun. Jadi jika produksi panas melalui laju metabolik lebih tinggi daripada jumlah semua panas yang hilang, panas yang tersimpan akan bertanda positif (surplus), yang berarti kandungan panas tubuh meningkat dan suhu tubuh akan meningkat. Jika panas yang tersimpan bertanda negatif (defisit), panas yang hilang lebih besar daripada panas yang diproduksi. Tubuh menjadi dingin, dan suhu tubuh akan turun.

DAFTAR PUSTAKA
  1. Anonim, 2005. Biophysics. Microsoft® Encarta® 2006 [DVD]. Redmond, WA: Microsoft Corporation.
  2. Anonim. 2007. Description of Biophysics. Springer. European Biophysics Journal, [cited 2007 Feb 5]. Available at: URL: http://www.springer.com/
  3. Blazejczyk, K. 2000. Assessment of Recreational Potential of Bioclimatic Based on The Human Heat Balance. Institute of Geography and Spatial Organization. Warsaw, Poland.
  4. Brake, R and Bates, G. 2002. A Valid Methods for Comparing Rational and Empirical Heat Stress Indices. School of Public Health, Curtin University, Perth, Australia. Ann.Occup.Hyg. 46(2):165-174, [cited 2007 Mar.5]. Available from: URL: http://annhyg.oxfordjournals.org/.
  5. Campbell, G. S. 1977. An Introduction to Environmental Biophysics. New York: Springers-Verlag.
  6. Corlett, E. N. and Clark, T. S. 1995. The Ergonomics of Workspaces and Machines. A Design Manual. Taylor & Francis, 2nd erds. USA.
  7. Epstein, Y and Moran, D. S. 2006. Thermal Comfort and the Heat Stress Indices. Industrial Health: 44, 388–398.
  8. Havenith, G. 2004. Clothing Heat Exchange Models for Research and Application. Environmental Ergonomics Research Group, dept.Human Sciences, Loughborough, UK. p.66-73., [cited 2007 Apr 19]. Available from: URL: http://magpie.lboro.ac.uk/.
  9. Havenith, G. 2002. The Interaction of Clothing and Thermoregulation. Human Thermal Environments Laboratory. Department of Human Sciences. Loughborough Univ., UK, [cited 2007 Apr 15]. Available from: URL: http://www.lboro.ac.uk/.
  10. Havenith, G. 2001. Individualized Model of Human Thermoregulation for the Simulation of heat stress response. Human Thermal Environment Laboratory, Loughborough University. J Appl. Physiol., 90:1943-1954, [cited 2007 Mar 5]. Available from: URL: http://jap.physiology.org/.
  11. Havenith, G. 1999. Heat Balance when Wearing Protective Clothing. Human Thermal Environment Laboratory, Loughborough University. Ann.Occup.Hyg, 43(5):289-296, [cited 2007 Mar 5]. Available from: URL: http://annhuy.oxfordjournals.org/.
  12. Monteith, J. L. and Unsworth, H. M. 1990. Principles of Environmental Physics. 2nd ed. London: Edward Arnold.